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Abstract. The coexistence of distinct templates is a common feature of the diverse proposals advanced to
resolve the information crisis of prebiotic evolution. However, achieving robust template coexistence turned
out to be such a difficult demand that only a class of models, the so-called package models, seems to have
met it so far. Here we apply Wright’s Island formulation of group selection to study the conditions for the
coexistence of two distinct template types confined in packages (vesicles) of finite capacity. In particular,
we show how selection acting at the level of the vesicles can neutralize the pressures towards the fixation
of any one of the template types (random drift) and of the type with higher replication rate (deterministic
competition). We give emphasis to the role of the distinct generation times of templates and vesicles as
yet another obstacle to coexistence.

PACS. 87.10.+e Biological physics: General theory and mathematical aspects – 87.23.Kg Dynamics of
evolution – 89.75.Fb Structures and organization of complex systems

1 Introduction

Though a ubiquitous feature of life (e.g., genomes, multi-
cellular organisms and animal societies) cooperation poses
a difficult problem to the classical interpretation of evo-
lution by natural selection as an egoistic process in which
individual organisms compete fiercely to guarantee the
presence of their genes in future generations. Cooperative
traits are costly because they presuppose the investment
of resources towards a public good, thus benefiting other
individuals who may utterly fail to contribute to the com-
munity welfare. Traits that benefit the group as a whole
but are deleterious to their bearers used to be termed al-
truistic but, probably to avoid the heavy anthropocentric
connotation of this term, the modern literature favors the
denomination cooperative traits instead [1]. There is an
extensive literature on the evolution of the cooperation in
nature (see e.g. [1–4]) but only very recently a series of
experiments on microbial populations have substantiated
the theoretical arguments supporting it [5–7].

A key element to explain the evolution of cooperative
traits is the existence of some form of non-random associ-
ation between individual members of the population. For
instance, cooperation may be restricted to a group of in-
dividuals sharing a common ancestor. This is the so-called
kin selection mechanism that gained fame by explaining
the cooperative behavior of social insects [8]. (Curiously,
although kin selection is fittingly considered a kind of
group selection, it relies entirely on a gene’s-eye view in
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which the unit of selection is the gene rather than the indi-
vidual or the group.) A robust alternative to the postula-
tion of mechanisms of recognition between kin individuals
is the spatial enclosure or compartmentalization of small
groups of individuals since then the offspring of cooper-
ators will remain close to their relatives and the benefits
from cooperation will be confined mainly to the group
of cooperators. In fact, compartmentalization is now ac-
knowledged as an obligatory stage in prebiotic evolution
needed to enforce cooperation among distinct templates
and so to set the conditions for the formation of a gene
network necessary to cellular life [9]. Henceforth we will
use interchangeably the terms template and replicator to
refer to a self-replicating molecule formed by a sequence
of nucleotides.

The awareness of the necessity of a primitive mecha-
nism to impose cooperation among templates has grown
from the seminal work of Eigen on purely competitive
templates which came to be known as the quasispecies
model [10]. Particularly relevant to our purposes was the
finding that the length of a replicating polymer (i.e., a
RNA-like template) is limited by the replication accuracy
per nucleotide and so primordial replicators would have
to replicate with very high accuracy in order to reach
the length of today’s RNA viruses (about 103 to 104 nu-
cleotides). Such a replication accuracy, however, cannot be
achieved without the aid of specialized catalysts (peptide
enzymes), but building those catalysts requires a blueprint
that amounts to a large nucleotide sequence, leading thus
to a molecular version of the old puzzle about the chicken
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or the egg – no large genome without enzymes, and no
enzymes without a large genome [11]. This finding and
the observation that templates with distinct replication
rates cannot coexist [12] triggered the so-called informa-
tion crisis of prebiotic evolution. This crisis brought to
light the challenging conclusion that, in spite of being at
the heart of natural selection, competition alone would
not have worked in prebiotic times: some form of coop-
eration between templates is mandatory to overcome the
information crisis.

Cooperation can bypass the information crisis by al-
lowing the coexistence of several short templates, i.e., by
splitting the information in modules, similarly to the di-
vision of the genome in chromosomes found in many or-
ganisms. To ensure the coexistence of distinct replicators,
Eigen and Schuster proposed a cyclic reaction scheme,
termed hypercycle, in which each replicator would aid in
the replication of the next one, in a regulatory cycle clos-
ing on itself [13]. Clearly, this proposal requires that the
primordial replicators functioned both as templates and
replicase. Although the discovery of the catalytic activity
of RNA has lent credibility to the hypercycle scenario [14],
the assumption that each replicator has two separate func-
tions, namely, a replicase for the next member of the hy-
percycle and a target for the replicase associated to the
previous member faced strong criticism [15]. In fact, while
it is obvious that natural selection will act so as to make
each element of the hypercycle a better target for replica-
tion, it will oppose or at least not favor the cooperative
part of the scheme, i.e., to make the replicator a better
replicase for other replicators. This function is then cer-
tain to degenerate quickly since deletions and mutations
that impair it would carry a selective advantage. In that
sense, as Maynard Smith pointed out, giving catalytic sup-
port in such molecular networks is an altruistic behav-
ior and so hypercycles are easy targets to parasites, i.e.,
molecules that do not reciprocate the catalytic support
they receive [16]. The ruin of the hypercycle is then an
unavoidable consequence of natural selection.

An alternative suggestion to resolve the problem of the
coexistence between templates which is very much in line
with the classical works on the origin of life [17,18] is to
enclose the unlinked templates in isolated compartments
or vesicles. The key to coexistence is to assume that the
vesicles proliferate with a production rate that depends on
their template compositions. Essentially, this amounts to
assume that the coupling among different template types
occurs through a common metabolism which is ultimately
the responsible for the survival and reproduction of the
vesicle, and that the well-functioning of this metabolism
requires the contribution of all template types. This is
the central idea behind the so-called package models [19],
among which the stochastic corrector model [20–23] is the
most popular. As revealed by the word ‘stochastic’, a cru-
cial ingredient of these models is the finitude of the pop-
ulation of templates within each vesicle. In fact, it is the
stochastic nature of the template dynamics that produces
diversity in the population of vesicles, creating thus the
opportunity for the operation of natural selection.

In contrast with the quasispecies and hypercycle mod-
els, very little is known about the dynamics and stationary
states of package models, since the great complexity re-
sulting from the coupling of template and vesicle dynamics
precludes a full analysis of the space of parameters of the
models. Such a systematic analysis is important to deter-
mine in what conditions, if any, template coexistence can
be achieved. The situation here is similar to that found in
models of group selection (see, e.g., [2–4] for reviews). In
particular, the coupling between the two dynamics can be
treated analytically provided there is a countable infinity
of vesicles, so the dynamics at the group level is determin-
istic [24–26]. Otherwise, this group selection formulation
retains the main ingredients of the package models in that
the number of templates within each vesicle is finite and
the survival and consequent proliferation of the vesicles
depends on their template compositions.

In this contribution we broaden a preliminary study
on the suitability of the classic group selection framework
to study coexistence of templates in package models [27].
In particular, we relax the unfounded but widely used as-
sumption of group selection models (see, e.g., [24–27]) that
templates and vesicles have the same generation times. In
doing so we found that coexistence is impossible if the
template generation time is much shorter than that of the
vesicles and that, when possible, template coexistence is
achieved only within a well-defined range of the vesicle
capacity.

2 Model

Following the formulation of Wright’s Island model [28]
we consider a global population composed of an infinite
number of spatially isolated local populations – the vesi-
cles – each of which encloses exactly N templates. This
framework, which forms the foundation for traditional
group-selection theories, has been successfully used to
study the conditions for the evolution and maintenance
of altruistic traits in nature (see, e.g., [3]). Here we em-
ploy the Island model to study a more difficult problem,
namely, the coexistence of two distinct template types A
and B within a same vesicle of capacity N . Without loss
of generality we assume that template A has replication
rate 1 − τ with τ ∈ [0, 1] and template B replication rate
1. Hence τ is referred to as the handicap parameter. The
vesicles are identified by their template compositions or,
more pointedly, by the number i = 0, . . . , N of type A
templates they wall in. The state of the global population
at a given generation t is completely specified by the fre-
quencies of vesicles of type i (i.e., a vesicle that encloses i
templates A and N − i templates B), denoted by Y t

i with∑
i Y t

i = 1 for all t. Given the mechanisms for template
competition that takes place inside the vesicles and for
the competition between vesicles, our goal is to derive a
recursion equation for the frequencies of the N+1 different
vesicle types. The life cycle of the vesicles (i.e., one gener-
ation) consists of three events – vesicle extinction, vesicle
recolonization and template replication – which take place
in this order and are described as follows.
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2.1 Vesicle extinction

As pointed out in Section 1, the coexistence of distinct
template types solves the information crisis problem be-
cause the information content of a vesicle may be seen as
split into several (two, in our case) parts, which must all
be present at any time to guarantee the viability of the
system as an integrator of information. Moreover, it would
be desirable that the different templates contribute with
approximately the same number to the vesicle composi-
tion. This constraint, namely, the presence of both tem-
plate types in equal concentrations within each vesicle, can
be enforced by choosing an appropriate measure for the
survival probability of type i vesicle, which we denote by
αi ∈ [0, 1]. Here we choose the geometric mean [19–22,27]

αi = 1 − g +
2g

N
[i (N − i)]1/2 (1)

where g ∈ [0, 1] is a parameter measuring the benefit
brought to the vesicle by the presence of the two template
types within it. Hence regardless of the value of g > 0
survival is guaranteed (αi = 1) for vesicles with an even
template composition (i = N/2). Vesicles that lack one of
the template types, i.e., vesicles of type i = 0 and i = N
are assigned a baseline survival probability 1 − g, so that
the selective pressure against these vesicles increases with
increasing g. We note that the vesicle survival probability
given in equation (1) can be seen as describing a dynam-
ical link among the template types through a common
metabolism – each template contribute to the good of the
vesicle by catalyzing its metabolism at various points [20].
The absence of any of the catalysts would then greatly im-
pair the vesicle metabolism and so its survival capability.

2.2 Vesicle recolonization

The net result of the extinction procedure described be-
fore is that a fraction 1−∑

i αiYi of vesicles disappear and
must then be recolonized, i.e., replaced by the surviving
vesicles. This is done by replicating these vesicles in pro-
portion to their frequencies in the population just after
the extinction procedure, yielding thus the following new
vesicle frequencies

αiY
t
i∑

j αjY t
j

(2)

for i = 0, . . . , N . This equation prompts the interpretation
of the parameter αi as the replication rate of a vesicle of
type i and so henceforth we will refer to the joint pro-
cesses of extinction and recolonization as the process of
vesicle replication. We note that this standard procedure
for recolonization (see, e.g., [24–26]) implies the instanta-
neous replacement of the extinct vesicles by the surviving
ones with the probability given in equation (2). For ex-
ample, in an extreme situation, in which only one vesicle
passes the extinction stage, this sole vesicle will replen-
ish the entire population (infinite or finite) in a single
time step. Although rarely made explicit, this assumption
seems to underlie all deterministic population models with

non-overlapping generations. However, this drawback can
be safely ignored if g is not close to 1 which, fortunately, is
the relevant situation in prebiotic evolution (see discussion
in Sect. 6).

2.3 Template replication

Since the capacity of the vesicles is fixed and finite, it
is necessary to use a stochastic approach to model the
dynamics of the templates inside each vesicle. As usual, we
assume that the number of copies that a template brings
forth is proportional to its relative replication rate, and
that there is no overlap between consecutive generations
of templates. Hence given that there are j templates of
type A and N − j of type B, i.e., given a vesicle of type j,
the probability that a template A is chosen to contribute
a clone to the next template generation is

wj =
j (1 − τ)

j (1 − τ) + N − j
(3)

which is thus identified with the relative replication rate
of templates of type A in a vesicle of type j. Similarly,
the probability that a template B is chosen is 1 − wj .
Then the probability Tkj that in a single generation of
templates a vesicle of type j changes to a vesicle of type
k is given by the probability that exactly k templates A
and N −k templates B are chosen for replication, yielding
the binomial distribution

Tkj =
(

N
k

)

(wj)
k (1 − wj)

N−k
. (4)

Now we are ready to calculate the probability Rij that
a vesicle of type j changes to a vesicle of type i in m
template generations,

Rij =
N∑

km−1=0

. . .

N∑

k1=0

Ti,km−1Tkm−1,km−2 . . . Tk2k1Tk1j

= (Tm)ij , (5)

which satisfies
∑

i Rij = 1 ∀j. The new ingredient here
is the integer parameter m ≥ 1 that yields the number
of replication cycles each local template population goes
through for each generation of the vesicle population. In
other words, if we set the generation time of the vesicles to
1, then the generation time of the templates will be 1/m,
and so we refer to m as the ratio between vesicle and
template generation times. Our formulation for the tem-
plate dynamics is essentially the celebrated Wright-Fisher
model of population genetics [29], which is very well suited
to describe stochastic effects (e.g., random drift) in finite
populations. Up to now only the extreme case m = 1,
in which templates and vesicles have the same generation
time, was considered in the literature [24–27], though it
is clear that a more plausible scenario would be to con-
sider m � 1. We note that in some alternative prebiotic
package models, in which the size of the local template
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population is allowed to increase, the vesicle replication
stage is triggered when the template population reaches a
certain size which is fixed a priori [19,20,22,23]. Thus, fix-
ing this limiting size is similar to fixing our parameter m.

2.4 Dynamics

Finally, given the events comprising the life cycle of tem-
plates and vesicles we can write a recursion equation for
the frequencies of vesicles of type i = 0, 1, . . . , N in the
global population

Y t+1
i =

∑N
j=0 RijαjY

t
j

∑N
j=0 αjY t

j

. (6)

Even in the stationary regime t → ∞, a closed solution for
Y t

i is not possible, except when the template and vesicle
dynamics decouple, which happens for g = 0 and m → ∞.
In both cases random drift ensures that for finite N ei-
ther template A or template B will reach fixation within
a given vesicle, i.e., Y ∞

i = 0 for i �= 0, N . In fact, the
very possibility of fixation of the less fit template A in a
few vesicles together with the increment of the survival
probability of those vesicles are key ingredients of the
classic models for the evolution and stability of altruis-
tic traits [24,25].

We note that our approach, based on Wright’s frame-
work for spatially structured populations, contrasts with
Wilson’s formulation [4] in which the group structure is
dissolved each generation to form a global mating pool
(see [30,31] for application in ecology and [32,33] for ap-
plication in prebiotic evolution). In particular, coexistence
is favored in this transient group formulation since differ-
ent templates in distinct vesicles are likely to be assigned
to the same vesicle during the group re-assembling proce-
dure after the mating stage.

In this contribution we do not take into account the
possibilities of interchange of templates between vesicles
(migration) and mutations that change template A into
B and vice-versa. These processes actually promote coex-
istence by preventing the fixation of the templates and so
they are important to test the robustness of models for the
evolution of altruism, the aim of which is the fixation of
the less fit template A rather than the coexistence between
the two template types [26]. In the following sections we
will characterize the stationary solutions of the recursion
equations (6) for a wide range of the control parameters
of the model.

3 Independent vesicles

In order to better appreciate the many obstacles hindering
the coexistence of distinct templates confined in vesicles
of finite capacity, in this section we focus on the simpler
problem in which the vesicles evolve independently of each
other. As pointed out before, this is achieved by setting
g = 0 in equation (1) so that the survival of the vesicles

is guaranteed regardless of their template compositions.
Alternatively, by letting m → ∞ we allow random drift
to fix one of the templates (i = 0 or i = N) and since
α0 = αN = 1 − g the competition between vesicles is ef-
fectively turned off. Actually, the reason there is no com-
petition in this neutral situation is because the number of
vesicles is infinite. If there were a finite number of vesicles
then random drift, now acting at the level of the vesicles,
would lead again to the fixation of only one vesicle type,
in spite of the fact that both types have the same survival
probability. Use of the diffusion approximation, valid in
the limit of large N and small τ such that the product
τN is finite, yields a simple expression for the fraction of
vesicles carrying the less fit template A [29]

Y ∞
N =

1 − exp (Nτp)
1 − exp (Nτ)

(7)

where p is the initial frequency of template A in each vesi-
cle. Clearly, Y ∞

0 = 1 − Y ∞
N . This analytical prediction is

compared with the results obtained by the numerical it-
eration of the recursions (6) in Figure 1, where we have
used Y 0

N/2 = 1 (hence Y 0
i = 0 if i �= N/2) so that p = 1/2.

As expected, there is a good agreement between the ex-
act numerical and the approximate analytical results for
small values of the handicap τ . In particular, for τ = 0 we
have Y ∞

N = p = 1/2. However, we find that Y ∞
N decreases

much faster than exp(−Nτ/2) with increasing τ .
The point here is to stress that although random drift

is a key element of models for the evolution of altruistic
traits, as it enables the fixation of the less fit template in
some vesicles (provided the handicap τ is small), it is a
serious hindrance to the coexistence of distinct templates
within a same vesicle. It is in this sense that we can say the
coexistence issue is more tricky to explain (and actually
much less studied) than the problem of the altruism in
nature.

4 Deterministic limit

Another hindrance to template coexistence, as well as to
the evolution of altruism via the fixation of the less fit tem-
plate A, is the deterministic pressure in favor of the fitter
template B that prevails in the limit of infinitely large
vesicle capacities N → ∞, regardless of the value of the
cooperation pressure g < 1. In fact, the reason that the
uniform initial vesicle population (i.e., all vesicles com-
posed of the same number of templates A and B) used
to draw Figure 1 resulted in the two antagonistic types
of vesicles was the amplification of random fluctuations
which is an inherent feature of the competitive dynamics
in a finite population. For N → ∞ such fluctuations are
absent and so all vesicles have the same composition at all
generations. As a result, the competition between vesicles
is turned off thus leading to the fixation of the fitter tem-
plate in all vesicles (except in the degenerate case τ = 0,
for which the two template types coexist forever).

It is clear then that template coexistence will be possi-
ble only within a narrow range of the values of the control
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Fig. 1. Semi-logarithm plot of the stationary frequency of vesi-
cles containing the less fit template as function of the handicap
parameter for independent vesicles of capacity N = 6, 12 and
24. The solid lines are the exact results obtained from iteration
of the recursion equations and the dashed lines are the results
of the diffusion approximation.

parameters and, in particular, of the vesicle capacity. In
the following section we determine the regions in the pa-
rameters space where coexistence is possible.

5 Template coexistence

Here we will focus on the fraction Ω of vesicles in the
stationary regime that carry copies of the two tem-
plate types regardless of their redundancies, so that
Ω = 1 − Y ∞

N − Y ∞
0 .

As pointed out before, in the case of degenerate tem-
plates τ = 0 the sole obstacle to coexistence is the effect of
random drift, which is intensified for small vesicle capaci-
ties. This result is illustrated in Figure 2, where we show
also the effect of increasing the ratio m between the vesicle
and template generation times. In this, as well as in the
following figures in which the integer quantities N and m
are depicted, the continuous lines are simply guides to the
eye. For N → ∞ we find exceptionally that Ω → 1. Two
features of this figure are worth emphasizing. First, for a
fixed value of the cooperation pressure g, there is a mini-
mum value of the vesicle capacity below which coexistence
is unattainable. Second, this threshold value, denoted by
Nc, increases with increasing m, i.e., coexistence is inhib-
ited if the local template populations evolve faster than
the vesicle population. In fact, Figure 3 shows that Nc in-
creases linearly with m and that the slopes of the straight
lines decrease in a nontrivial way as the cooperation pres-
sure increases.

We turn now to the analysis of the general case where
the template types have different replication rates, τ > 0.
In contrast with the degenerate case discussed before, in-
creasing the capacity of the vesicles N will now favor the
fixation of the fittest template, thus inhibiting coexistence.
This is exactly what Figure 4 depicts: the fraction of vesi-
cles with the two template types Ω is nonzero only for a
well-defined range of the vesicle capacity, which decreases
as m increases. We note that because coexistence is im-
possible in the deterministic regime we have Ω = 0 for

Fig. 2. Fraction of vesicles with the two template types in
their compositions as function of the vesicle capacity for τ = 0
(i.e., the templates have the same replication rate), g = 0.1
and m as indicated in the figure.

Fig. 3. Critical value of the vesicle capacity as function of the
ratio between vesicle and template generation times for τ = 0
and (left to right) g = 0.1, 0.2, . . . , 0.9. Below Nc, the fixation
of one of the template types via random drift bars coexistence.

Fig. 4. Fraction of vesicles with the two template types in their
compositions as function of the vesicle capacity for τ = 0.1,
g = 0.35 and m as indicated in the figure.

N → ∞ regardless of the value of m. Figures 5 and 6 sum-
marize this finding by showing Nc (i.e., the value of N at
which Ω vanishes) as function of m for several values of the
control parameters τ and g. As hinted in Figure 4, there is
a certain value m = mc (τ, g) beyond which coexistence is
impossible regardless of the vesicle capacity. For m < mc,
we always find two solutions for Nc corresponding to the
lower and higher vesicle capacity compatible with coexis-
tence. The lower bound for N changes little with variation
of g (see Fig. 5) and is practically insensitive to variation
of τ (see Fig. 6), provided that the parameter setting re-
mains within the coexistence boundary, i.e., m < mc. The
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Fig. 5. Critical value of the vesicle capacity as function of
the ratio between vesicle and template generation times for
τ = 0.1 and g as indicated in the figure. For fixed m the two
values of Nc determine the range of vesicle capacity within
which coexistence is possible.

Fig. 6. Critical value of the vesicle capacity as function of the
ratio between vesicle and template generation times for g = 0.8
and τ as indicated in the figure.

Fig. 7. Critical value of the ratio between vesicle and template
generation times as function of the cooperation pressure for τ
as indicated in the figure. Above mc coexistence is impossible.

upper bound, however, is extremely sensitive to variation
of those parameters. Finally, Figure 7 illustrates how mc

depends on the parameters τ and g.
Up to now we have emphasized the role of the genera-

tion times of templates and vesicles as yet another obstacle
to the coexistence of distinct template types, thus gener-
alizing previous approaches that assumed that template
and vesicle populations were updated (this term is appro-
priate since in both cases it is assumed that generations
do not overlap) with the same frequency, i.e., m = 1 [27].
For completeness, in Figure 8 we move m to a secondary

Fig. 8. Critical value of the handicap parameter as function
of the cooperation pressure for m = 1 (main graph) and m = 5
(inset). The vesicle capacities are indicated in the main graph.
Below τc coexistence is impossible.

position and stress the effect of the cooperation pressure g
and handicap τ on the coexistence of templates A and B.
These results illustrate clearly that drift is the main ob-
stacle to coexistence in the case the handicap τ is small,
since a large cooperation pressure is needed to retain the
two template types for small vesicle sizes. As τ increases,
however, the deterministic template competition rapidly
takes the lead as the main hindrance to coexistence. The
effect of increasing m, as shown in the inset, is to shift
non-uniformly the coexistence lines to higher values of the
cooperation pressure.

6 Conclusion

Compartmentalization of unlinked templates is widely re-
cognized as a necessary step towards the evolution of cel-
lular life, but it is rarely appreciated that confining a finite
number of templates in a vesicle actually creates a new ob-
stacle to coexistence – the fixation of one of the template
types caused by random drift. Since this disruptive effect
is enhanced in vesicles of low capacity, one should not ex-
pect to find such vesicles in a realistic prebiotic scenario.
On the other hand, the risk of vesicles of large capacity is
well-known: the deterministic competition between tem-
plates results in the fixation of the type with the higher
replication rate. So very large vesicles are not to be ex-
pected in a prebiotic scenario too.

The range of permitted vesicle capacities depends on
several biologically relevant parameters, and we can spec-
ulate on the values that produce a sensible scenario. For
instance, it is now well established that vesicles sponta-
neously assembled from fatty acid micelles [34,35] (see
also [36]) grow and divide competing for the fatty acid
molecules in the environment. Hence vesicles can do well
without templates and so the parameter g that appears
in the survival probability of the vesicles, equation (1),
should be set to a small value, but not a too small one
since then it would be impossible to compensate for the
pressures of drift and competition. This observation im-
mediately excludes low capacity vesicles from our prebi-
otic scenario (see Fig. 8). However, the same figure shows
that coexistence in high capacity vesicles, say N = 100, is
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possible only if the templates have near degenerate repli-
cation rates (τ � 1). Of course, one may object that this
is a precarious situation since sooner or later a mutant
template with a higher replication rate will show up and
destroy this fragile balance. The answer to this criticism
brings out the main advantage of compartmentalization:
the mutant (or parasite) appears in a single vesicle which
is then unlike to pass the extinction stage of the life cy-
cle, since by definition the presence of the parasite reduces
its chance of survival, equation (1). The parasite is then
quickly eliminated as a result of the death of the infected
vesicle.

Although one might think it is plausible to assume
that the templates have a much shorter generation time
than the vesicles, i.e., m � 1, that would prevent coex-
istence altogether (see Fig. 7). In addition, following the
arm-chair argument given before, one expects the num-
ber of infected vesicles to increase with the number of
template replication cycles m simply because mutants ap-
pear as results of errors during the replication stage. So,
though counter-intuitive at first sight, we are impelled to
admit that the template generation time must be of the
same order or even longer than that of the vesicles. Our
model can be readily modified to describe the case m < 1
as well: we just have to replace Rij in equation (6) by
1 + (Tij − 1) δ0,t∗ where t∗ is the remainder of t/ (1/m).
For example, if m = 1/5 then the templates will replicate
at t = 0, 5, 10, . . . only, while the vesicles will replicate at
all (integer) t. However, we will not pursue this research
line any further since this is clearly a biologically unrea-
sonable situation, which would distance our model from
more plausible scenarios in which the fission of the vesi-
cles is triggered when the number of templates reaches a
certain threshold value, usually the double of the template
population size of a just born vesicle [19,20].

The ultimate goal of theoretical research on prebiotic
evolution is to come up with a coherent scenario for the
origin of life. Our study supports the view that such a
plot begun with a very large population of vesicles capa-
ble of template-independent reproduction. The accidental
assimilation of different species of unlinked templates that
happened to boost the reproduction capability of the vesi-
cles assured then that only vesicles containing a special
kind of templates – those with near-degenerate replica-
tion rates and long generation times – would thrive. At
this point the information crisis was overcome and the
stage for a genetic takeover was set: the vesicles would
soon loose their ability to reproduce without the aid of
templates, and become thus mere vehicles or means for
template replication. To refine or reject this scenario is
the main theme of theoretical research on the evolution of
life [37].

The work of J.F.F. was supported in part by CNPq and
FAPESP, Project No. 04/06156-3. D.G.M.S. was supported by
CNPq.
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